batman-adv scalability Layer 2 Mesh Networks - Myths and Risks

Linus Lüssing

Freifunk Hamburg Geekend02, Sep. 2013

Introduction

- Layer 2 Mesh Networks
- 2 Past
 - Experiences From Lübeck

Present

- Statistics From Hamburg
- 4 Future
 - Features in Development

Introduction Past Present Future Conclusion Conclusion

- Layer 2 Mesh Networks
- 2 Past
 - Experiences From Lübeck

3 Present

- Statistics From Hamburg
- 4 Future
 - Features in Development

Layer 2 Mesh Networks

batman-adv: Big, Virtual Switch

Layer 2 Mesh Networks

batman-adv: Big, Virtual Switch

Layer 2 Mesh Networks

batman-adv: Encapsulation

- Encapsulates ethernet frames
- In own batman-adv header

	Introduction Past Present Future Conclusion	Layer 2 Mesh Networks
Advantages		

- Supports IPv4, IPv6, probably IPv42, ...
- Your non-IP / link-layer protocol?
- More flexible than Linux IP routing table:
 - Interface bonding
 - Network coding
 - ...
- Simple configuration
 - MAC addresses are unique
 - No IP subnet coordination
- Fast Roaming

 Introduction Past Present Future Conclusion
 Layer 2 Mesh Networks

 Disadvantage: Overhead

Layer 3 mesh routing protocol:

Mesh protocol overhead

Layer 2 mesh routing protocol:

- Mesh protocol overhead
- + Layer 2 specific overhead

Layer 2 Mesh Networks

Disadvantage: Overhead

IEEE 802.11s:

• Designed for \sim 32 nodes

Layer 2 Mesh Networks

Disadvantage: Overhead

"Layer 2 Mesh Networks? Don't Scale!"

Introduction

Layer 2 Mesh Networks

2 Past

• Experiences From Lübeck

3 Presen

• Statistics From Hamburg

4 Future

• Features in Development

Introduction Past Present Experiences From Lübeck Future Conclusion

• Experiences from Freifunk Lübeck

Experiences From Lübeck

1 Node: Kernel panics

- 2009, pre 0.1 firmware
- Did not boot: batman-adv crashing

Experiences From Lübeck

1 Node: Kernel panics

- 2009, pre 0.1 firmware
- Did not boot: batman-adv crashing

Experiences From Lübeck

10 Nodes: Too Large Neighbourhood on VPN

Trying out batman-adv over VPN, using tinc:

- tinc does meshing, too:
- Large neighbourhood on VPN: many rebroadcasts
- Overhead on DSL got close to 1MBit/s

October 2011

- Added tinc
- OGM (= route update + link quality) interval:
 - 1s -> 3s
- Should scale to 30 nodes then, right?

Experiences From Lübeck

15-20 Nodes: Again, Too Large Neighborhood on VPN

- Wrong assumption about OGM scalability:
 - Linear to number of nodes in line topology
 - But squared to number of local neighbour nodes

Experiences From Lübeck

Changes in 0.3

August 2012: fastd

- Decreased neighbourhood size on VPN
- Peer-Groups: Connection to two of n gateway nodes,

Experiences From Lübeck

80 Nodes: Multicast Overhead

- Two wifi neighbours
- Measured on adhoc wifi interface
- Result: Losing about 25% airspace

Experiences From Lübeck

80 Nodes: Multicast Overhead - Types

- Service Announcements: SSDP, LLMNR, MDNS
- Address Resolution: ARP+ICMPv6

April, 2013

- batman-adv 2013.0.0: Distributed ARP Table
- Multicast Rate: 1MBit/s ⇒ 12MBit/s
- Rebroadcasts on VPN: $3 \Rightarrow 1$
- Filter for non-essential multicast packets

Introduction

Layer 2 Mesh Networks

2 Pas

• Experiences From Lübeck

3 Present

Statistics From Hamburg

4 Future

• Features in Development

- tcpdump on fastd VPN tunnel interface
- Thu Sep 19 00:00:00 2013 Thu Sep 19 23:59:59 2013

Statistics From Hamburg

RX by batman-adv type, average Bits/s

Statistics From Hamburg

TX by batman-adv type, average Bits/s

Statistics From Hamburg

RX by batman-adv type, Packets/180s

Conclusion

Statistics From Hamburg

RX by multicast type, average Bits/s

Statistics From Hamburg

RX by ICMPv6 type, average Bits/s

Statistics From Hamburg

Statistics: Conclusions

- OGM and layer 2 specific multicast overhead about the same
- IPv6 ND is currently the largest layer 2 specific overhead
- Getting close to the ADSL upload limit

Features in Development

Outline

Conclusion

Features in Development Villains

"Split horizon" for multicast payload frames

No rebroadcasts for packets on/from VPN interface

Villains

Features in Development

Conclusior

"Split horizon" for multicast payload frames

Thu Sep 26 21:14:08 UTC 2013 eth1 / traffic statistics

	rx	tx
bytes	19.83 MiB	10.39 MiB
max average min	572 kbit/s 90.25 kbit/s 32 kbit/s	340 kbit/s 47.31 kbit/s 16 kbit/s
packets	223391	102620
max average min	758 p/s 124 p/s 38 p/s	395 p/s 57 p/s 16 p/s
time	30.00 minutes	+

Thu Sep 26 21:44:08 UTC 2013

uture

Features in Development

"Split horizon" for multicast payload frames

Thu Sep 26 21:14:06 UTC 2013 eth2 / traffic statistics

	rx	tx
bytes	19.59 MiB	3.24 MiB
max average min	488 kbit/s 89.16 kbit/s 32 kbit/s	56 kbit/s 56 kbit/s 14.73 kbit/s 4 kbit/s
packets	222931	28916
max average min	635 p/s 123 p/s 45 p/s	57 p/s 57 p/s 16 p/s 7 p/s
time	30.00 minutes	

Thu Sep 26 21:44:06 UTC 2013

Features in Development Villains

"Split horizon" for multicast payload frames

- Here: 47.31KBit/s vs. 14.73KBit/s
- Eliminates next bottleneck: ADSL upload

- Distributed Hash Table for IPv6 Neighbor Discovery
- Like current DAT (Distributed ARP Table), but for IPv6, too
- Eliminates current largest ICMPv6 overhead:
 - IPv6 Neighbor Discovery
- Status: Patchset submitted, not upstream yet

Features in Development Villains

Multicast Awareness

- Send multicast packets to interested nodes only
- Removes most ICMPv6 overhead:
 - Neighbor Solicitations, MLD Reports, ...
- Status: First basic patchset submitted

Features in Development Villains

B.A.T.M.A.N. IV - Echo Location Protocol

Image Source: Petteri Aimonen, Wikimedia Commons, CC-BY-SA

- Perform link quality measurements with own packet type: ELP
- Reduced overhead through different intervals for OGMs and ELP
- Easier to optimize OGM propagation

Features in Development Villains

Script-Kiddie: Mallory

- Playing with physical or virtual link layer
- Local disaster (mostly?)

< 口 > < 同

Features in Development Villains

Super Villain: Joker

- Knows batman well
- Global disaster

Conclusion

- Current batman-adv algorithm is optimized for sparse networks
 - Keep node neighbourhood small
- Common LL-Service-Announcement protocols:
 - Don't scale... :(
- With this flat and VPN architecture, batman-adv / layer 2 meshing works with:
 - 80 nodes: without multicast filters
 - 300+ nodes: with multicast filters
- Eliminating Layer 2 specific overhead:
 - Is on the horizon

